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Abstract
Since a general Gaussian process is phase-sensitive, a stable phase reference is required to take
advantage of this feature. When the reference is missing, either due to the volatile nature of the
measured sample or the measurement’s technical limitations, the resulting process appears as
random in phase. Under this condition, we consider two single-mode Gaussian processes,
displacement and squeezing. We show that these two can be efficiently estimated using photon
number states and photon number resolving detectors. For separate estimation of displacement
and squeezing, the practical estimation errors for hundreds of probes’ ensembles can saturate the
Cramér–Rao bound even for arbitrary small values of the estimated parameters and under realistic
losses. The estimation of displacement with Fock states always outperforms estimation using
Gaussian states with equivalent energy and optimal measurement. For estimation of squeezing,
Fock states outperform Gaussian methods, but only when their energy is large enough. Finally, we
show that Fock states can also be used to estimate the displacement and the squeezing
simultaneously.

1. Introduction

Quantum metrology with light estimates unknown parameters of quantum processes and reveals the limits
of the existing measurements from treating the measuring probes as physical systems in specific optimized
quantum states [1–4]. Optical interferometry is one the main examples of improvement brought in by
using quantum states [5]. There, quantum noise entering the interferometer through the beam splitter’s idle
port can be reduced by using squeezed states of light [6–9]. The effect is robust enough to find a place in
practical applications where high precision is required, such as detecting gravitational waves [10]. A specific
case of optical interferometry relies on homodyne detection [11], where the reference arm of the
interferometer is represented by a classical local oscillator beam [7–9], which leaves only the probe to be
prepared in a quantum state. Another approach takes advantage of controlling the full interferometer and
preparing joint quantum NOON states in both of its arms [12–14]. The probes in quantum metrology are
not limited to light. Atomic interferometry using collective states of atoms [15, 16] and quantum
optomechanics employing state of motion of a massive mirror [17, 18] have both been studied for
gravimetry. Similarly, quantum states of trapped ions [19, 20] can be applied toward the detection of weak
electric fields.

One thing all of these methods have in common is the use of quantum states that are nonclassical [21],
which means that they cannot be described by classical physics alone. The nonclassical states in optical
systems can be further divided into Gaussian and non-Gaussian. Gaussian states, such as squeezed states
[6–9] can be described by Gaussian functions in phase space, while the non-Gaussian cannot. One
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drawback shared by both kinds of nonclassical states is their vulnerability to imperfections. While the
nonclassical quantum states of probes have been shown to significantly outperform the classical methods in
ideal cases [7, 14], this improvement can vanish under realistic experimental conditions. In Gaussian
scenarios [9, 22–28], such as employing squeezed states to boost interferometry, the losses of the quantum
state simply reduce its effectiveness [8, 9]. In non-Gaussian cases, such as employing so-called NOON states
used to estimate phase, losses can completely remove the quantum advantage [13, 29]. Even though recent
progress tries to alleviate this effect [30], one question that needs to be addressed for all quantum metrology
proposals is whether its benefits survive contact with practical reality.

Fluctuation of phase is one of the major sources of imperfection in optical interferometry [31–36] and
quantum communications [37, 38]. It can take the shape of random phase fluctuation in the sample, but
also of the inability to lock the process in the sample to the phase of the probe. There are also situations in
which there are no detectors to capitalize on the phase. This can happen in optics when broadband photon
counting detectors are used instead of homodyne detection [39]. However, control of the phase is not
necessary for estimating the strength of the phase-sensitive operations, such as coherent displacement and
nonclassical squeezing process. It was shown in a recent trapped-ion experiment [20], where the size of
displacement, a generally phase-sensitive operation, was estimated without any kind of phase reference, just
relying on Fock state preparation and measurement.

In this paper, we extend this idea to optical experiments and show that optical estimation of the strength
of unitary Gaussian operations, displacement and squeezing, can be indeed realized without any phase
reference with Fock states and measurements on the photon number basis. For displacement, this approach
surpasses even optimal Gaussian methods, which are based on homodyne detection and squeezed states
with equivalent energy and which use the phase reference. In squeezing estimation, Fock states are generally
comparable or even slightly inferior to Gaussian methods at low energies and overcoming them for larger
energies of the probe states. Our probe states do not need to be pure and can have an advantage over the
Gaussian probe states even for realistic losses of the order of 20%. Finally, we show that this approach can
be useful for the simultaneous estimation of both quantities [40].

2. Model of the process

In our quantum sensing protocol for Gaussian processes without a stable phase reference, represented by a
mixture of quantum evolution with all phases, we start with an ensemble of M probes prepared in a
well-defined quantum state that is fully under our control. The probes then sequentially interact with a
sample, undergoing weak phase-randomized Gaussian evolution in the process, and are measured by a
specific measurement. The measured data are then evaluated using maximum likelihood estimator (MLE)
to extract the unknown parameters of the Gaussian operation. In our analysis we will focus on photon
number resolving detectors (PNRD).

Action of a general single-mode Gaussian channel [41] can be represented by a linear transformation of
quadrature operators of the field x̂ and p̂, with [x̂, p̂] = i. If we arrange the quadratures into a vector
ξ̂ = (x̂, p̂)T, the general Gaussian operation transforms them into a new vector

ξ̂′ = V ξ̂ + α+ (x̂E, p̂E)T, (1)

where V is a real matrix with |V| < 1, α = (αx,αp)T is a vector of real values, and x̂E and p̂E are zero mean
value Hermitian operators of the environment that satisfy [x̂E, p̂E] � i(1 − |V|) and their statistics is
Gaussian. Among these terms, vector α models displacement, matrix V includes phase shift, squeezing, and
losses, and the pair of environment operators contributes added noise. In the absence of imperfections, the
operation is unitary and is fully described by the vector α and matrix V with |V| = 1. Such operation can be
decomposed into three separate processes. Phase shift, represented by operator R̂(φ) = e−iφn̂, displacement
represented by D̂(α) = exp(αâ† − α∗â) and squeezing represented by operator Ŝ(ξ)= exp[(ξâ†2 − ξ∗â2)/2].
Here, â = (x̂ + ip̂)/

√
2 denotes the annihilation operator of the field and n̂ = â†â is the photon number

operator. Although these operations do not commute in general, the order of these operations can be
arbitrary—what matters is their final product and different orderings can lead to the same overall operation
if the parameters are suitably changed.

Let us now consider a scenario without a well-defined phase. The Gaussian effect on the mechanical
probe can be decomposed by a sequence of displacement, phase shift, and squeezing, where the strengths of
the displacement and squeezing are of main interest. In optical testing, it removes the need to lock the
pump of the nonlinear process appearing in the sample, such as weakly nonlinear waveguide, to the phase
of the signal. Both displacement and squeezing are phase-sensitive operations. If their phase cannot be
locked to the signal or detectors are phase-insensitive, it is considered random. In the extreme case the
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phase is assumed to be uniformly distributed on the interval [0, 2π) by the principle of maximum entropy
[42]. In any case, the operation is no longer unitary and needs to be expressed in terms of map which
transforms the probe state ρ̂in as M:

ρ̂f (Nc , Ns) = M(ρ̂in) =

∫ 2π

0

dφ1

2π

∫ 2π

0

dφ2

2π
D̂(

√
Nc eiφ1 )Ŝ(

√
Ns eiφ2 )ρ̂inŜ†(

√
Ns eiφ2 )D̂†(

√
Nc eiφ1 ). (2)

In contrast to a general pure Gaussian unitary operation with five parameters, the phase indeterminate
operation has only two free parameters: Nc related to the average linearized energy added by the
displacement, and Ns related to the energy added by the squeezing. On vacuum state ρ̂in = |0〉〈0|, the added
energies of the two operations are given as Nc for displacement and sinh2(

√
Ns) for squeezing. In the limit

of weak strengths Ns and Nc, which is the regime we are interested in, phase-insensitive displacement and
squeezing operations commute and the average photon number is increased by Ns + Nc.

Two main effects that are not part of this model and yet play a significant role in practical situations are
the fluctuations of parameters Ns and Nc, and linear optical losses. Fluctuation of the parameters arises due
to instability of the estimation process. In this case, what is usually estimated is the mean value of the
parameters with their known fluctuation. The other effect, optical losses, naturally appear when part of
information contained in the probe is lost. In the case of fast short-time passage through the sample, the
majority of losses will appear either during the in-coupling and out-coupling of the probe. As a
consequence, they can often be estimated separately and we can treat them as a known parameter in the
estimation of the displacement and squeezing. We will discuss both of these imperfections more later in the
text.

Before we proceed to the analysis of the protocol, let us establish some theoretical framework by briefly
recalling the quantum Cramér–Rao (QCR) inequality and the quantum Fisher information (FI). QCR
inequality states that for a given probe and channel that encodes an unknown parameter of interest θ, the
estimation error of any unbiased estimator is bounded by the inverse of quantum FI [43, 44],

Δ2 θ � 1

MH(θ)
, (3)

where the variance Δ2θ = 〈(θest − θ)2〉 is the estimation error, and M is the number of trials in an
experiment, and H(θ) = Tr(ρ̂θL̂2

θ) is the FI of the probe state after the encoding. It is known that the lower
bound is asymptotically saturable by using MLE [45–47]. In experiments, the optimal precision suggested
by equality in (3) is obtained by an optimal positive operator valued measurement (POVM), which can be
found by the eigenbasis of the symmetric logarithmic derivative operator L̂θ satisfying an equation,

∂ρ̂θ
∂θ

=
ρ̂θL̂θ + L̂θρ̂θ

2
. (4)

If the density matrix of the output state is diagonalized as ρ̂θ =
∑

nρn|ψn〉〈ψn|, the symmetric logarithmic

derivative operator is given L̂θ = 2
∑

n,m
〈ψn|∂θ ρ̂θ |ψm〉

ρn+ρm
|ψn〉〈ψm| [48]. When the optimal measurement is

chosen, the classical FI

F(θ) =
∑

n

1

p(n|θ)

(
∂p(n|θ)

∂θ

)2

(5)

becomes the quantum FI where p(n|θ) = Tr(ρ̂θΠ̂n) with {Π̂n} being an optimal POVM, i.e. the projectors
of eigenstates of L̂θ. According to QCR inequality (3), FI lower-bounds the estimation error obtainable
during the actual measurement by Δ2Nc = 1/MF where M is the number of trials. In a general scenario,
however, there is no guarantee that this bound can be achieved with a practical number of M although it is
achievable using the MLE in an asymptotic regime of M →∞. In the following sections, we present the
estimation error of our scenario obtained by the MLE for a finite number of M.

Map (2) is phase-insensitive; it commutes with any phase shift applied to the state of the probe.
Consequently, if the probe state is phase-insensitive it remains so. This suggests that a well-defined phase of
the probe may not be required for optimal estimation. This can be illustrated on an example of probe
prepared in Fock state ρ̂in = |m〉〈m|. Such probe is pure but completely phase-insensitive. In the limit of
weak strengths Nc, Ns 	 1, map (2) transforms the initial pure state of the probe into a mixture of Fock
states with weights as:

p(m − 2|Nc, Ns) 
 Nsm(m − 1)/4 (6)

p(m − 1|Nc, Ns) 
 Ncm (7)

p(m|Nc, Ns) 
 1 − Nc(2m + 1) − Ns(m2 + m + 1)/2 (8)
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p(m + 1|Nc, Ns) 
 Nc(m + 1) (9)

p(m + 2|Nc, Ns) 
 Ns(m + 2)(m + 1)/4. (10)

Since the state is diagonal in the Fock basis these weights can be perfectly measured by PNRD. In this
important limit we can see that the displacement and squeezing unitaries act in a complementary
way—displacement changes the photon number by one, squeezing changes it by two. This indicates that in
this limit the two operations can be discerned independently.

The measured data, with the help of equations (6)–(10), can be used to construct MLEs for each
parameter. Let us denote the number of outcomes corresponding to detecting particular state |k〉 by nk with
k ∈ {m − 2, m − 1, m, m + 1, m + 2}; thus,

∑m+2
k=m−2 nk = M, where M is again the total number of trials.

We simply ignore the outcome out of the above range since the probability is negligible for very small
strength of the signal. By maximizing the log-likelihood function log L(D = {nk}|Nc, Ns) =∑

knk log p(k|Nc , Ns) for each parameter Nc and Ns, one can find that the MLE is written as

Nest
c =

nm−1 + nm+1

M(2m + 1)
, and Nest

s =
2(nm−2 + nm+2)

M(m2 + m + 1)
, (11)

and that they are unbiased for any M > 0, i.e., 〈Nest
c 〉 = Nc and 〈Nest

s 〉 = Ns, where the bracket represents
the average over all possible outcomes. The form of the MLEs, in particular the exclusive use of the
respective count numbers nk, implies that each parameter can be estimated simultaneously without
knowing the other parameter.

In addition, from the same equations we can derive classical FI to evaluate the estimation of Nc and Ns

by using a PNRD, which we can then compared to the upper limit given by quantum FI for the optimal
detector. For the case of phase-insensitive states, PNRD gives us full available information and the classical
FI is equal to quantum FI. Based on equations (6)–(10), the classical FI of Fock states can be approximately
found to be:

F(Nc) ≈
2m + 1

Nc
, (12)

for displacement and

F(Ns) ≈
m2 + m + 1

2Ns
, (13)

for squeezing in the limit of Nc, Ns 	 1. In this limit, one can derive the average estimation error of ML
estimators (11)

Δ2Nc ≈
Nc

M(2m + 1)
and Δ2Ns ≈

2Ns

M(m2 + m + 1)
, (14)

which is consistent with the FI. For both of them the performance improves with the increased Fock
number of the probe, linearly in the case of displacement while quadratically in the case of the squeezing.
The different scalings of FI is ascribed by the fact that weak displacement and squeezing operations are
single-photon and two-photon processes, respectively, as shown in equations (6)–(10). Both quantities
diverge as the signal decreases, but the relative estimation errors, which are given as inverse of the FI relative
to the signal, R = 1

F(Ni)Ni
with i = c, s, attain constant value. In the next sections, we will analyze how these

values can be obtained with a realistic number of probes and how is the procedure affected by realistic
processing and imperfections in comparison to results obtainable with Gaussian resources.

3. Displacement estimation with Fock state probe

Let us first analyze situations in which the displacement operation is the only relevant effect. In this case,
the operation is represented by map (2) with the squeezing parameter Ns = 0. It transforms the initial Fock
state |m〉〈m| into a mixed state

ρ̂f (Nc) =

∫ 2π

0

dφ

2π
D̂(

√
Nc eiφ)|m〉〈m|D̂†(

√
Nc eiφ) =

∞∑
n=0

p(n|Nc)|n〉〈n|, (15)

where
p(n|Nc) = |〈n|D̂(

√
Nc)|m〉|2 = m!

n!
e−Nc Nn−m

c L(n−m)
m (Nc)

2, (16)

is the conditional probability to detect n photons for a given Nc and m with Ln
m(x) being associated Laguerre
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Figure 1. Simulation for displacement estimation error Δ2Nc. (a) Against the number of copies M for various strengths
Nc = 0.1, 1.0, 2.0 by a Fock state probe |m = 3〉. Lines and dots represent the inverse of FI (CR bound) and the estimation errors
of simulations averaged over 3000 trials using MLE. (b) Against the signal energy Nc for various input probe Fock number
m = 0, 1, 2, 3, 4 with the number of copies M = 500. Again the lines and dots are inverse of FI and errors obtained by simulation
averaged over 3000 trials using MLE. Throughout the paper, error bars represent twice the standard deviation of the obtained
estimation error divided by the square root of the number of simulation runs.

polynomials [49]. Since the final state is diagonal in Fock basis, it has equal quantum and classical FI for
PNRD:

F(Nc) =
∞∑

n=0

1

p(n|Nc)

(
∂p(n|Nc)

∂Nc

)2

=
2m + 1

Nc
, (17)

which is exactly the value approached by the approximate relation (12). It implies that in the limit of weak
strength Nc 	 1, the protocol of the MLE of equation (11) is the optimal procedure. The derivation of the
FI is supplied in appendix A. It should be noted that the monotonous increase of FI with the energy of the
state m requires the measurement in the Fock basis. If the measurement was replaced by measurement of
the mean energy 〈n̂〉, the size of displacement could still be inferred, but the error of the measurement
increases with m (see appendix B for detail).

To see whether practical errors can reach the bounds given by classical FI, we have performed a
numerical simulation of the full protocol of estimating displacement with Fock state probes and PNRD. For
each scenario given by a different combination of m and Nc, we have generated 3000 sets of simulated data
D with probability distributions p(n|Nc) and evaluated them with an MLE, Nest

c , obtained by numerical
maximization over a finite range, corresponding to a prior knowledge, of the log-likelihood function:

log L(D ≡ {nk}|Nc) =
∞∑

k=0

nk log p(k|Nc), (18)

where nk is the number of outcomes for k photons. The estimated value Nest
c was then compared to the true

value Nc to obtain the estimation error Δ2Nc = 〈(Nest
c − Nc)2〉 and compared to the QCR bound. The

results of the simulations can be seen in figure 1, where the simulated runs, marked by points, are compared
to the bounds derived from quantum FI, represented by lines. In figure 1(a) we can see that, for probe in
state |3〉, the realistic estimation error shows the same scaling as the bounds given by FI, saturates this
bound already for M = 500 and that this scaling does not depend on the estimated value. Both the
dependence on M and Nc show that the QCR bound is practically achievable with a finite M. Figure 1(b)
then confirms that this behavior holds even for probes prepared in different Fock states. It is worth noting
that when the signal strength is small Nc 	 1, the process becomes a binary outcome estimation problem of
nm−1 + nm+1 and nm in equation (11) so that the CR inequality is saturated by the ML estimator for any
number of copies M as shown in (14).

We emphasize that phase is not the only parameter that has a fluctuation in realistic experiment.
Fluctuations of the strength of the displacement, which may arise from the fluctuation of an auxiliary
pump, can also be considered. In this case, we can assume that the strength of the signal is a random
variable following a normal distribution with a mean Nc and a given variance depending on the amount of
fluctuation and that the aim is to estimation the mean value Nc. We have numerically checked that in this
case, the estimation error is additively increased by the amount of the fluctuation, which is shown in
appendix C. Keeping this in mind, from now on, we assume the fluctuation is small enough to neglect.

Since quantum FI for Fock state probes is achievable by estimation with PNRD, we can use it for further
analysis. For comparison we can consider practical Gaussian estimation methods employing Gaussian
probes and stable phase between the input and the measured state. Notice that even if we assume stable
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Figure 2. Comparison between the lower bounds on estimation error given by the inverse of classical FI of Fock states with
PNRD (dots), quantum FI of squeezed states with mean photon number equal to m (solid lines), and quantum FI of coherent
states (dashed lines) with mean photon number equal to m. Quantum FI for squeezed states was calculated numerically.
Different colors correspond to different values of the estimated parameter, Nc = 0.1, 0.3, 0.5, 1.0, 2.0, and are specified by the
color bar. The squeezing required for energies equivalent to m = 2, 4, 6, 8, 10 amounts to 10.0,12.5, 14.1, 15.3, 16.2 dB.

phase for Gaussian probes and measurements, the phase of quantum operation of interest can be still
random and the quantum operation is characterized by equation (2).

Even though the operation is random in phase, the stable phase is actually the most optimistic scenario
for the Gaussian tools, because it enables noise reduction coming from squeezed vacuum fluctuations [50].
If we lifted this assumptions and considered phase randomized Gaussian states or, equivalently, Gaussian
states with phase randomized detection, their performance would be necessarily worse than that of Fock
states. For our comparison we shall therefore consider quantum FI of phase-sensitive Gaussian states which
might be higher than what can be achievable by Gaussian measurements. In this way we are comparing
realistic estimation based on Fock states with the upper bound for Gaussian states.

Let us denote the output state from a channel with a parameter θ as ρ̂θ. In our case, the unknown
parameter θ corresponds to the amount of energy Nc pumped by the displacement. The quantum FI of
these density matrix can be found [44]:

H(θ) =
4[1 −F(ρ̂θ, ρ̂θ+dθ)]

dθ2
, (19)

where F(ρ̂0, ρ̂1) =

(
Tr

√
ρ̂

1/2
0 ρ̂1ρ̂

1/2
0

)2

is the quantum fidelity between two quantum states ρ̂0 and ρ̂1. Any

Gaussian probe in a pure state can be expressed as a displaced squeezed vacuum state D̂(β)Ŝ(ζ)|0〉. Finding
the optimal Gaussian probe requires maximization of the FI over the two parameters β and ζ under the
chosen constraints such as the total mean photon number in the input state. One can easily check that the
value of β does not change the precision; thus, the optimal Gaussian probe is a squeezed state without any
displacement possessing the lowest energy. In figure 2 we show the comparison of classical FI for Fock
probes with PNRD, marked by dots, quantum FI of optimized Gaussian probes with equal energy, marked
by solid lines, and quantum FI for vacuum state, marked by dashed lines, for the estimation of the
unknown phase-insensitive displacement operations with various Nc. We can see that the Fock state probes
are superior to optimal Gaussian probes with the same mean photon number for the entire range of
displacement strengths even though the former requires no phase stability and the latter may use arbitrary
coherent detection schemes. This improvement is most prominent for large values Nc. Note that since
quantum FI is used to assess the achievable estimation precision of Gaussian states, and the final state from
a squeezed state probe is generally phase-sensitive, we are implicitly assuming that a stable reference beam
outside of the sensor is prepared and may be properly used for phase-sensitive measurement. Without this
reference the state needs to be treated as phase randomized squeezed state, which always performs worse
than Fock state with equivalent energy, and is even definitely inferior to the vacuum state for low energies.

Let us now discuss the effects of optical imperfections, such as losses, to ensure the validity of the results
in practical scenarios. The photon-loss process, which is the main imperfection for light, can be described
by quantum master equation in the interaction picture as [51]

dρ̂

dt
=

γ

2

(
2âρ̂â† − ρ̂â†â − â†âρ̂

)
, (20)

where γ is the loss parameter. The loss rate is defined as 1 − η = 1 − e−γt with t � 0 describing the
monotonous decay of the coherence terms. This dynamics can be equivalently described with a virtual beam
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Figure 3. Simulation for displacement estimation in the presence of photon-loss before the sample. Dots and solid lines
represent estimation errors and inverse quantum FI. (a) Against the number of copies M for different loss rates, η = 1, 0.9, 0.7
for Nc = 1.0 and |m = 3〉. (b) Against the loss rate 1 − η for different values of the measured displacement Nc = 0.1, 1.0, 2.0
with input probe |m = 3〉 and M = 500. Classical limits (dashed lines) given by coherent states, and optimal Gaussian limits
(dotted lines) by squeezed state with the same energy are evaluated from the inverse quantum FI without the losses.

splitter interaction coupling the probe with a zero temperature bath. The losses can manifest either before
the sample and thus represent the degradation of the probe, or after the sample and be related to
imperfection of the measurement. In the case of displacement estimation, the two losses act in almost the
exactly the same way, only the one after the channel also reduces the measured quantity. To be more exact, if
we represent the losses by completely positive trace-preserving map [29]

Lη(ρ̂) =
∞∑

k=0

Âkρ̂Â†
k, Âk =

√
1 − η

k

√
k!

√
ηâ†ââk, (21)

then the losses after the displacing sample and before the displacing sample can be related as
Lη[D̂(

√
Nc)ρ̂inD̂†(

√
Nc)] = D̂(

√
ηNc)Lη(ρ̂in)D̂†(

√
ηNc). We can see that the losses affect the probe in

exactly the same way and the only difference is in scaling of the estimated parameter. Displacement adding
energy Nc before the loss is equivalent to displacement adding energy ηNc after the loss. In addition, this
behavior remains also for the Gaussian states. For the sake of simplicity we can therefore consider only the
losses before the sample. It should be noted that we assume η is known through prior measurements and
not a subject of the estimation.

In numerical simulation shown in figure 3, the theoretical Fock state distribution p(n|Nc, η) was used to
generate 1000 sets of data, which were then used, through MLE algorithm, to obtain the unknown value Nc

and estimate the error Δ2Nc. The theoretical distribution p(n|Nc, η) was obtained by using virtual beam
splitter model represented by equation (20). In figure 3(a) are the numerically obtained errors for probe
state |3〉 for three different levels of loss, represented by points, compared to quantum FI of the same probe
states represented by solid lines. We can see that the errors saturate the CR bound even in the presence of
loss and keep the same scaling as the ideal scenario for various M. In figure 3(b) are the same errors plotted
with respect to range of losses and compared to optimal Gaussian states with the same mean photon
number and without losses, represented by dashed lines, and to vacuum states, represented by dotted lines.
We can see that even in the presence of losses, the estimation based on Fock states surpasses even the
optimal methods using Gaussian states and optimal coherent measurements. We can also see different
trends that appear for the comparison of Fock states to Gaussian and classical limits as the Nc changes. As
Nc decreases, higher losses can be tolerated before the Fock state estimation falls behind the classical limit,
or the shot-noise limit [1–4], but at the same time lower losses are enough to fall behind methods using
optimal Gaussian states. We have observed similar behavior for larger Fock states up to m = 7 from a
numerical calculation of FI.

4. Squeezing estimation with Fock state probe

Let us now turn to the scenario in which we are interested only in the strength of an unknown squeezing
operation that can be represented by map M in (2) with Nc = 0. We can analyze this scenario in the same
way as the previous one. After this phase-insensitive squeezing operation, a Fock state |m〉 transforms to a
mixed state

ρ̂f (Ns) =

∫ 2π

0

dφ

2π
Ŝ(
√

Ns eiφ)|m〉〈m|Ŝ†(
√

Ns eiφ) =
∞∑

n=0

p(n|Ns)|n〉〈n|, (22)
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Figure 4. Simulation for squeezing parameter estimation. The solid lines and circle dots represent the estimation error based on
CR bound and simulation averaged over 3000 trials using MLE with the full number statistics p(n|Ns). (a) Against the number of
copies M for Ns = 0.1, 0.3, 0.5. (b) Against the energy added by squeezing Ns for m = 0, 1, 2, 3, 4. The number of copies for
simulation is M = 500.

where [52]

p(n|Ns) = |〈n|Ŝ(
√

Ns)|m〉|2 = n!m!

2n−m

tanhn−m √
Ns

cosh2m+1 √Ns
S(
√

Ns, m, n) when |m − n| is even (23)

= 0 when |m − n| is odd, (24)

with

S(r, m, n) =

∣∣∣∣∣
∑

k

(−1)k sinh2k r

22k k!(m − 2k)![k + (n − m)/2]!

∣∣∣∣∣ . (25)

Here, the sum is taken for integers k for which the argument of the factorials is positive. For input Fock
states we can explicitly calculate the quantum FI, which is again equal to classical FI for measurement in
Fock state basis,

F(Ns) =
m2 + m + 1

2Ns
. (26)

The derivation is similar to that of displacement estimation and is supplied in appendix A. We can thus
analyze the estimation errors again in realistic scenario by numerical simulation. Similar to the
displacement estimation case, as the strength of the signal Ns decreases, the estimation error by ML
estimator of (11) saturates the QCR bound for any number of M as shown in (14).

In figurse 4(a) and (b), these numerically obtained errors, marked by dots, are shown relative to the
number of copies M and value of the measured squeezing Ns, respectively. They are again compared to
quantum FI represented by solid lines. In both cases we can see that the estimation with Fock states and
PNRD again approaches the precision predicted by the CR bound for a broad range of parameters.
Increasing the photon number m of the Fock state probe leads to better performance for the estimation of
the phase-insensitive squeezing operation. Again, we note that the fluctuation of Ns can also be considered
and the same behavior as displacement estimation is presented in appendix C.

Again we can compare the performance of Fock states to the Gaussian methods. When the Gaussian
methods cannot take advantage of stable phase, the Gaussian probes can be expressed as mixtures of Fock
states and therefore exhibit inferior performance. Numerical tests have confirmed that, in contrast to the
displacement estimation, phase randomized squeezed states with arbitrary energy always perform worse
than the vacuum state. To see the limits of the Fock-state-based estimation, we compare them to the
optimal Gaussian estimation that takes advantage of phase reference. Here, in contrast to the displacement,
a pre-displacement of the probe improves the estimation contrast while increasing mean photon number of
the state of the probe. However, our numerical simulations revealed that the improvement gained by this
displacement is, with regards to the number of photons added, smaller than what would be gained by
additional squeezing with the same number of added photons. We therefore compared the estimation error
obtained by Fock states with the FI of Gaussian probes of coherent states or squeezed vacuum states without
loss to obtain a strict threshold. Figure 5 shows the mean photon number of (a) squeezed or (b) coherent
states that have the same estimation error as the inverse of the classical FI exhibited by various Fock states
and PNRD. The comparison shows that the Fock states are more energy-efficient than the Gaussian states in
most cases. This is not the case for estimation of squeezing for small values of Ns and small m. This is a
rather interesting realization; metrology with Gaussian states can be applicable even in scenarios seemingly
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Figure 5. Average photons required to attain the same quantum FI as classical FI of Fock states with PNRD (a) using squeezed
states, (b) using coherent states. The left (right) plot shows that in overall, squeezed (coherent) states require more photon
numbers than Fock states.

Figure 6. Simulation for squeezing estimation with a Fock state |m = 3〉 as an input probe in the presence of photon-loss. The
dots represent the estimation error based on simulation using MLE with the full number statistics p(n|Ns), which are obtained by
averaging over 1000 trials with Ns = 0.25. (a) Against the number of copies M. Similarly to displacement estimation, the CR
bound is saturated by MLE for a wide range of M in the presence of photon-loss. (b) Against loss rate 1 − η. The dotted and
dashed lines represent the estimation error limit of squeezed states and of coherent states without photon-loss, respectively. These
classical estimation limits were evaluated as inverse of quantum FI for the states. The figure clearly showcases several scenarios in
which Fock states subjected to loss provide better precision than pure Gaussian states.

favoring the symmetry of Fock states. It should be noted that in optical sensing, Gaussian states are
generally easier to prepare than Fock states, but the difficulty varies wildly. Coherent states can be prepared
routinely and are significantly more feasible than impure squeezed states. Preparing completely pure
squeezed states, on the other hand, has difficulties comparable to preparation of Fock states. Comparison of
equal mean photon numbers in figure 5 shows that to attain the same precision with Gaussian states,
significantly higher energy is required, which might be an issue for some applications [53]. It is worthwhile
to emphasize that our numerical calculation of quantum FI of Gaussian states showed by fitting with
respect to the mean photon number that the scaling of quantum FI of coherent state and squeezed state is
linear and quadratic with the mean photon number of the probe.

The bounds for coherent and squeezed states can now help us in evaluating the performance of the
estimation with Fock states under losses. The first important observation is that there is no simple relation
in the estimation of squeezing between the effect of losses before and after the sample. This is because
squeezing can lead to entanglement between the probe and the after-sample-bath, which then alters the
properties of the probes. However, in the limit of low values of estimated parameter Ns 	 1, the effect of
squeezing is linearized and this difference can be neglected. In this regime, losses after the channel would
alter the estimated value, but the qualitative behavior of the error rates would remain the same. Since this is
the regime we are most often interested in, we can again, for the sake of simplicity of analysis, consider only
the case with losses before the channel.

We again performed numerical simulation for the estimation errors of squeezing under loss, which are
shown in figure 6 (a) relative to number of copies M and (b) relative to the loss rate 1 − η. Both figures
show that, similarly to the scenario of displacement estimation, the estimation errors under loss approach
the CR bound and that the scaling with M remains consistent. While for small values of Ns and m the Fock
states and squeezed states with optimal coherent detection are comparable such as Ns = 0.1 and m = 3, the
Fock states enable attaining a better scaling of precision for large Ns and m as suggested by figures 5(b) and
6(b) for small 1 − η.
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5. Simultaneous estimation of displacement and squeezing

Finally, let us consider a general scenario in which both quantities, Nc and Ns, appear at the same time and
are estimated simultaneously. This can be part of characterization of a general Gaussian process. Another
way this scenario can arise is when squeezing, the nonlinear process we want to characterize, is
accompanied by noise with Poissonian distribution that can not be separated from the process. In this
scenario we need to attempt simultaneous estimation of both quantities even though we are only ultimately
interested in one.

After the general channel (2), the Fock state probe will be transformed to

ρ̂f (Nc, Ns) = M(ρ̂in) =
∞∑

n,k=0

w(n|k)q(k|m)|n〉〈n| =
∞∑

n=0

p(n|m)|n〉〈n|, (27)

where q(k|m) = |〈k|Ŝ(r)|m〉|2, w(n|k) = |〈n|D̂(α)|k〉|2, and p(n|m) =
∑∞

k=0 w(n|k)q(k|m). The lower
bound of error on simultaneous estimation of Nc and Ns, or multiparameter CR bound, is given by the
quantum FI matrix C � H−1 [43, 54–56] with covariance matrix CNc ,Nc = 〈(Nest

c − Nc)2〉, CNs,Ns =
〈(Nest

s − Ns)2〉, CNc ,Ns = CNs,Nc = 〈(Nest
c − Nc)(Nest

s − Ns)〉. Here the matrix inequality A � B means that
A − B is a positive semi-definite matrix. Since the final state is always diagonal in the Fock basis, the
quantum FI matrix, which is the same as the classical FI matrix based on the PNRD, can be written as

H(Nc, Ns) =

(
HNc ,Nc HNc ,Ns

HNs,Nc HNs,Ns

)
, (28)

with

Hx,y =
∞∑

n=0

1

p(n|m)

(
∂p(n|m)

∂x

)(
∂p(n|m)

∂y

)
, (29)

where x, y are in {Nc, Ns}. The classical multiparameter CR bound can also be asymptotically saturated by
ML estimator. From the multiparameter CR bound, we can extract the estimation errors of each parameter,

Δ2Nc �
HNs,Ns

HNc ,Nc HNs,Ns − H2
Nc ,Ns

= H−1
Nc ,Nc

(
1 − H2

Nc ,Ns
/HNc ,Nc HNs,Ns

)−1
, (30)

Δ2Ns �
HNc ,Nc

HNc ,Nc HNs,Ns − H2
Nc ,Ns

= H−1
Ns,Ns

(
1 − H2

Nc ,Ns
/HNc ,Nc HNs,Ns

)−1
. (31)

When more than one parameter in the process are involved, two main difficulties arise that may degrade
the estimation error [43, 57]. First of all, as shown in inequalities (30) and (31), the off-diagonal elements
of FI matrix decrease the estimation error for fixed diagonal elements. Non-vanishing off-diagonal elements
of FI matrix imply that the parameters interplay each other in the process, so that one needs to know the
other parameters in order to estimate a parameter of interest precisely. On the other hand, when the
off-diagonal element of the FI matrix vanishes, the estimation errors reduce to

Δ2Nc � H−1
Nc ,Nc

, (32)

Δ2Ns � H−1
Ns,Ns

. (33)

Thus, when the off-diagonal element of the FI matrix is much smaller than the diagonal elements, the
estimation error of each parameter is bounded by the inverse of each diagonal element of the FI matrix. In
this case, we can interpret the inequalities as that of a single-parameter estimation where any information
about the other parameters is not required to estimate the parameter of interest.

The second difficulty is that even when one is estimating a single parameter, since the other parameters
are involved, the diagonal elements of quantum (classical) FI may decrease. For instance, when we estimate
the squeezing parameter Ns, the displacement process in map (27), written as w(n|k), plays a role of a noisy
process in the measurement setup. Similarly when we estimate the displacement parameter Nc, the
squeezing process in map (27), written as q(k|m), plays a role as a preparation error. Thus, generally when
more than one parameter is involved, the estimation error may decrease. We investigate our case by
numerical simulation focusing on these difficulties.

In figures 7(a) and (b), we show the numerically calculated the lower bounds of the estimation errors for
two different sets of measured values. We numerically confirmed that the off-diagonal elements are very
small compared to the diagonal elements [H2

Nc ,Ns
/HNc,Nc HNs,Ns < 10−3 in figure 7(a) and

H2
Nc ,Ns

/HNc,Nc HNs,Ns < 1.2 × 10−2 in figure 7(b)], which means that we do not suffer from the first difficulty
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Figure 7. Simultaneous estimation errors for Nc (blue lines) and Ns (red lines). More specifically, solid lines with circles
represent the lower bound of the estimation error in equations (30) and (31), respectively. Dashed lines with triangles represent
the quantum FI of Fock state probe for estimating Nc(Ns) when Ns(Nc) is 0 and known. (a) shows values for estimating
Nc = Ns = 0.01, (b) shows values for estimating Nc = Ns = 0.05.

in this regime and that the inverse of the diagonal components of FI matrix approximately give the lower
bounds of the estimation errors of each quantity as written in equations (32) and (33). This is best seen for
small values of estimated parameters in figure 7(a) where the off-diagonal elements are truly negligible and
errors are practically identical, whether both quantities are measured or just single ones. The reason why
simultaneous estimation for small values of estimated parameters works well is that when the estimated
parameters are small, displacement and squeezing operations do not interfere each other because they are
single-photon and two-photon processes, respectively, as emphasized in equations (6)–(10). In figure 7(b),
where the estimated parameters are not as small, the quantities start disturbing each other and the deviation
from the individual estimations increase. When the estimated parameters are not small enough, the role of
the other parameter as a noisy process becomes so dominant that highly nonclassical states such as Fock
states of large photon numbers may cease to give a small estimation error as shown in figure 7(b).

6. Conclusion

In this work, we have investigated the possibility of using Fock states and PNRD for parameter estimation of
single mode Gaussian unitaries in the absence of stable phase reference. This scenario is relevant in optical
sensing when stable phase reference is unavailable through the sample, for example because of random
nature of the examined operation and the light emitted by the sample is weak.

To accommodate both points of view, we have evaluated the performance of Fock states under realistic
environment and compared them to the optimal performance of phase-sensitive Gaussian states with no
loss and optimal quantum measurement. We found out that for estimation of both weak displacement and
squeezing, the Fock states together with Fock basis detection can, already for ensemble of 500 trials saturate
the Cramér–Rao bound and provide error rates surpassing optimal Gaussian states with equivalent mean
photon number. Loss incurred in the sample or during preparation of the probes limits the quality of the
estimation. The influence generally depends on the strength of the measured interaction. When
Nc, Ns ≈ 0.5, Fock states outperform the Gaussian bounds even when affected by 20% losses. When
Nc, Ns ≈ 0.1, loss of 20% can be tolerated when compared to coherent states, but less then 5% loss brings
the Fock states above the level of pure squeezed states. Interestingly enough, when estimating squeezing
with low energy probes, Gaussian squeezed states surpass the Fock states even though the symmetry of the
operation favors them. Simultaneous estimation of both squeezing and displacement is also possible
without being disturbed from each other and it works best in the limit of small parameters, Nc, Ns < 0.1,
when the operations are effectively independent. Together, these features can allow either multi-parameter
estimation of an optical Gaussian process in various systems, including atomic physics and solid-state
physics, or estimation of new squeezing processes under inherent Poissonian noise. The method can also be
extended for estimation of higher order processes which encompass joint n-photon effects.

Experimental application of the procedure relies on Fock states and measurements in Fock basis. The
measurement requires PNRD. Transition edge sensors (TES) [58–62] is well known to be promising in this
area as they are already capable of resolving up to 12 photons with estimated 0.98 detection efficiency [63].
Alternatively, detector with photon number resolving capability can be constructed from an array of on-off
detectors [64–70], or it can be, for purposes of proof-of-concept tests, replaced altogether by homodyne
tomography. The PNRD can be also used for preparation of the Fock states for the probes. Detecting a
specific Fock state in one mode of a two-mode squeezed state generated by optical parametric oscillator
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(OPO) projects the other mode into the same Fock state and is a technique often employed in quantum
optics. It is also possible to generate the necessary Fock states by merging single photon states [71], which
can be generated by quantum dots [72–76]. A proof-of-principle experimental test of the estimation
method could be immediately realized with Fock states |1〉 or |2〉, conditionally obtained from an OPO,
measured by TES and homodyne tomography for the verification purposes. Coherent displacement can
appear by a weak crosstalk to a different mode occupied by a coherent state in an optical system [77], using
the optomechanical coupling in an optomechanical system [78]. Finally, the detection method can be also
considered outside the area of quantum optics. For example, Fock states were already employed for
estimation of displacement and can be considered for estimation of squeezing on the same platform
[79, 80].
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Appendix A. Quantum FI

Let us consider a unitary operation Û = e−iĤθ where the Hamiltonian Ĥ generates θ. In the case of
displacement, Ĥ = â + â†, and for squeezing, Ĥ = i(â2 − â†2). After the phase-randomized displacement or
squeezing operation, the output state can be written as

ρ̂f =

∞∑
n=0

p(n|m)|n〉〈n| =
∞∑

n=0

|〈n|Û|m〉|2|n〉〈n|. (A1)

Let us first consider displacement estimation, Û = eαâ†−α∗ â. Since the final state is diagonal in Fock basis,
the derivation of classical FI of p(n|m) is sufficient. The classical FI for |α| is written as

F(|α|) =
∞∑

n=0

1

p(n|m)

(
∂p(n|m)

∂|α|

)2

. (A2)

Assuming α to be real without loss of generality, the differential term is simplified as

(
∂p(n|m)

∂|α|

)2

=
(
−〈n|D̂(α)|m〉〈m|D̂†(α)(â† − â)|n〉+ 〈n|D̂(α)(â† − â)|m〉〈m|D̂†(α)|n〉

)2
(A3)

=
(
〈n|D̂(α)|m〉〈m|D̂†(α)(â† − â)|n〉

)2
+
(
〈n|D̂(α)(â† − â)|m〉〈m|D̂†(α)|n〉

)2

− 2〈n|D̂(α)|m〉〈m|D̂†(α)(â† − â)|n〉〈n|D̂(α)(â† − â)|m〉〈m|D̂†(α)|n〉 (A4)

= 4p(n|m)〈m|D̂†(α)(â† − â)|n〉〈n|D̂(α)(â − â†)|m〉. (A5)

Finally, we obtain the FI

F(|α|) = 4〈m|D̂†(α)(â† − â)D̂(α)(â − â†)|m〉 = 4〈m|(â† − â)(â − â†)|m〉 = 8m + 4. (A6)

Similarly, one can check that F(r) = 2(m2 + m + 1).
Since we are interested in the FI about Nc = |α|2, one can use the chain-rule for the classical FI such as,

F(Nc) =
∞∑

n=0

1

p(n|m)

(
∂p(n|m)

∂Nc

)2

=
1

4Nc

∞∑
n=0

1

p(n|m)

(
∂p(n|m)

∂|α|

)2

=
F(|α|)

4Nc
=

2m + 1

Nc
. (A7)

Similarly, the FI about Ns = r2 is obtained by
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F(Ns) =
∞∑

n=0

1

p(n|m)

(
∂p(n|m)

∂Ns

)2

=
1

4Ns

∞∑
n=0

1

p(n|m)

(
∂p(n|m)

∂r

)2

=
F(r)

4Ns
=

m2 + m + 1

2Ns
. (A8)

Appendix B. Estimating displacement by mean intensity measurement

The advantage of the Fock state probes requires the Fock state measurement to be fully utilized. This can be
shown by considering a different, more limited, measurement that measures only the average moments
instead of the full Fock state distribution. This is the case of coarse grained intensity detectors which average
over the individual results and allow access only to moments

〈n̂〉 = m + Nc (B1)

〈n̂2〉 = m2 + 2Nc(2m + 1) + N2
c (B2)

Δ2n̂ = 〈n̂2〉 − 〈n̂〉2 = 2Nc(m + 1). (B3)

The signal-to-noise ratio (SNR) can be defined where the signal is the change in the average photon
number of the probe and the noise is the uncertainty in the photon number as

SNR =
〈n̂〉 − m√

Δ2n̂
=

√
Nc

2(m + 1)
. (B4)

Here, we notice that SNR has completely inverse tendencies from the FI against m and Nc, i.e. a larger
precision for a small m and a large Nc. The linearized sensitivity (Δ2Nc)Ô = Δ2Ô/|∂〈Ô〉/∂Nc|2 based on
〈n̂〉 gives an information about the uncertainty of Nc by measuring the observable Ô which is given as

(Δ2Nc)n̂ =
Δ2n̂(

∂〈n̂〉/∂Nc

)2 = 2Nc(m + 1). (B5)

Similarly, we can test the linearized sensitivity based on the second moment,

〈n̂4〉 − 〈n̂2〉2 = 2(4m + 1)N3
c +

(
18m2 + 2m + 3

)
N2

c +
(
8m3 + 2m2 + 6m + 1

)
Nc 
 8m3Nc, (B6)

〈n̂4〉 − 〈n̂2〉2

(∂〈n̂2〉/∂Nc)2

 1

2
mNc, (B7)

where the approximation is under the condition of a small Nc and a large m. It shows that the error based
on the second moment also increases with m. Note that a high linearized sensitivity indicates a less precise
measurement, or a large error. The error increases with m and the best probe is the vacuum probe, and
therefore the Fock state probes do not give any advantage. Therefore, we know that the gain in FI of
equation (17) cannot be obtained by simply using the information about average photon number 〈n̂〉.
These results imply that the information about mean values does not provide the scalings of sensitivity
available by estimation strategies with PNRD.

Appendix C. Fluctuations of signal

In realistic experiments, fluctuations of pumps lead to a fluctuations of signals. Or, the signal itself may have
a fluctuation. In this case, a natural approach is to estimate the mean value of the signal. In this section, we
analyze the effect of the fluctuation on the estimation error. We have simulated the estimation of the
strength of the displacement and squeezing, Nc = 1 and Ns = 0.1, with a Fock state |m = 3〉. In the
Monte-Carlo simulation, each individual probe passes through a channel with different parameters,
displacement and squeezing, and these fluctuate according a normal distribution with the mean Nc, Ns,
respectively. Figure 8 shows the additional estimation error due to fluctuations of the signals, characterized
by the variance of the normal distribution. Here, the additional estimation error is calculated by the
difference between the average estimation error obtained by the Monte-Carlo simulation,

Δ2Nc ≡ 〈(Nest
c − Nc)

2〉, Δ2Ns ≡ 〈(Nest
s − Ns)

2〉 (C1)

and the estimation error indicated by FI. Explicitly, the simulation is performed using the MLE, and the
estimation error from FI is written as 1/MF(Nc) and 1/MF(Ns). We can see from the figure that the amount
of the fluctuation of the signals adds the estimation error. It can be understood by noting that when
fluctuations are small, FI can be approximated by that at the mean so that the only the fluctuation changes
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Figure 8. Additional estimation error that arises from fluctuations of the signals of (a) displacement and (b) squeezing. The
additional estimation errors are the same as the fluctuations of the signals (solid lines) when fluctuations are small. We have
averaged over 1000 trials and used M = 500 copies.

the total estimation error. Thus, when fluctuation is large as shown in figure 8(a), one observes the
deviation because the FI cannot be simply approximated by that at the mean. In conclusion, assuming that
the fluctuation of the signal strength is small enough, FI at the mean is an essential quantity that determines
the relevant estimation error.
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